Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization
نویسندگان
چکیده
At each outer iteration of standard Augmented Lagrangian methods one tries to solve a box-constrained optimization problem with some prescribed tolerance. In the continuous world, using exact arithmetic, this subproblem is always solvable. Therefore, the possibility of finishing the subproblem resolution without satisfying the theoretical stopping conditions is not contemplated in usual convergence theories. However, in practice, one might not be able to solve the subproblem up to the required precision. This may be due to different reasons. One of them is that the presence of an excessively large penalty parameter could impair the performance of the box-constraint optimization solver. In this paper a practical strategy for decreasing the penalty parameter in situations like the one mentioned above is proposed. More generally, the different decisions that may be taken when, in practice, one is not able to solve the Augmented Lagrangian subproblem will be discussed. As a result, an improved Augmented Lagrangian method is presented, which takes into account numerical difficulties in a satisfactory way, preserving suitable convergence theory. Numerical experiments are presented involving all the CUTEr collection test problems.
منابع مشابه
Generalized Quadratic Augmented Lagrangian Methods with Nonmonotone Penalty Parameters
For nonconvex optimization problem with both equality and inequality constraints, we introduce a new augmented Lagrangian function and propose the corresponding multiplier algorithm. New iterative strategy on penalty parameter is presented. Different global convergence properties are established depending on whether the penalty parameter is bounded. Even if the iterative sequence {xk} is diverg...
متن کاملAn augmented Lagrangian trust region method for equality constrained optimization
In this talk, we present a trust region method for solving equality constrained optimization problems, which is motivated by the famous augmented Lagrangian function. It is different from standard augmented Lagrangian methods where the augmented Lagrangian function is minimized at each iteration. This method, for fixed Lagrange multiplier and penalty parameters, tries to minimize an approximate...
متن کاملThe boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems
Augmented Lagrangian methods are effective tools for solving large-scale nonlinear programming problems. At each outer iteration a minimization subproblem with simple constraints, whose objective function depends on updated Lagrange multipliers and penalty parameters, is approximately solved. When the penalty parameter becomes very large the subproblem is difficult, therefore the effectiveness ...
متن کاملLocal Convergence Properties of
We consider the local convergence properties of the class of augmented Lagrangian methods for solving nonlinear programming problems whose global convergence properties are analyzed by Conn et al. (1993a). In these methods, linear constraints are treated separately from more general constraints. These latter constraints are combined with the objective function in an augmented Lagrangian while t...
متن کاملNonlinear programming algorithms using trust regions and augmented Lagrangians with nonmonotone penalty parameters
A model algorithm based on the successive quadratic programming method for solving the general nonlinear programming problem is presented. The objective function and the constraints of the problem are only required to be differentiable and their gradients to satisfy a Lipschitz condition. The strategy for obtaining global convergence is based on the trust region approach. The merit function is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comp. Opt. and Appl.
دوره 51 شماره
صفحات -
تاریخ انتشار 2012